
Computer Architecture
Tuesday, March 29, 2022 3:19 PM

 CSE 141 Page 1

Key Questions:
Operations

How many?○

Which ones?○

-

Operands
How many?○

Location○

Types○

How to Specify?○

-

Instruction Format
Size (bits)○

How many formats?○

-

Designing ISA
Thursday, March 31, 2022 3:35 PM

 CSE 141 Page 2

History of ISA, Comparing ISA
Thursday, March 31, 2022 4:10 PM

 CSE 141 Page 3

Fixed Length Instructions (MIPS)
Easy fetch and decode○

Simplify pipelining and parallelism○

-

Variable-length instructions (x86, VAX)
Multi-step fetch and decode○

Much more flexible and compact instruction set○

-

Hybrid instructions (ARM)
Middle ground○

-

MIPS Instructions are 32 bits long

Many different instruction formats
Complicates decoding○

Uses more instruction bits to specify format○

Allow usage of variable length ISA○

-

MIPS has 3 instruction formats, fixed 32 bit instruction size

Operands
Registers (32 options)○

Memory (2^32 locations)○

-

Registers are easy to specify, close to processor (fast access)-

Load-store architectures
Normal arithmetic instructions only use registers○

Access memory only with explicit load/store instructions○

-

MIPS most arithmetic instructions have 3 operands

Addressing modes
Register direct - R3○

Immediate (literal) - #25○

Direct (absolute) - M[1000]○

Register indirect - M[R3]○

Base Displacement - M[R3 + 1000]○

Base Index - M[R3 + R4]○

Scaled Index - M[R3 + R4 * d + 1000]○

Autoincrement - M[R3++]○

Autodecrement - M[R3--]○

Memory Indirect - M[M[R3]]○

-

MIPS uses Register direct, Immediate, Base Displacement

MIPS Design, Instruction Formats, Addressing Modes
Thursday, March 31, 2022 3:46 PM

 CSE 141 Page 4

Memory can be represented as an array of bytes

MIPS is a 32 bit word architecture, each instruction and data value is 32 bits, or 4 bytes

Memory Structure
Thursday, March 31, 2022 5:24 PM

 CSE 141 Page 5

Jumps
Used to implement GOTO, initialization○

Procedure call (jump routine)
Used to implement functions○

-

Conditional Branch
Used to implement if-the-else, loops○

-

Control flow specifies two things
Condition to jump○

Location to jump to○

-

Jump: j <Location>

Jump and link: jal <Location>
$31 = PC + 4

Jump register: jr $31
PC = $31

Branch on Equal: beq r1, r2, offset
PC = (PC + 4) + offset * 4

Branch on Not Equal: bne r1, r2, offset
PC = (PC + 4) + offset * 4

Store less than: slt $1, $2, $3 -> if ($2 < $3)
set $1 = 1, otherwise $1 = 0

Control Flow, MIPS Jump/Branch Instructions
Tuesday, April 5, 2022 3:42 PM

 CSE 141 Page 6

Arithmetic:
add, subtract, multiply, divide-

but NOT: mod, exponents, add with carry, sin, cos-

Logical
and, or, shift left, shift right, xor-

but NOT: nand, nor, bit clear-

Data Transfer
load word, store word, load half, store half-

but NOT: post increment load/store, direct operations on memory contents, load/store multiple-

MIPS Instructions
Tuesday, April 5, 2022 3:36 PM

 CSE 141 Page 7

 CSE 141 Page 8

Time to do a task
Execution time, response time, latency○

-

Tasks per unit time
Throughput, bandwidth○

-

Ways to represent performance
Execution time○

Throughput (operations / time)○

Frame rate○

Responsiveness○

Performance / Cost○

Performance / Power○

Performance / Energy○

-

Ways to measure execution time
Program reported time?○

Wall-clock time?○

User CPU time?○

User + Kernel CPU time?○

-

Only has meaning in context of a specific program-

Not useful as absolute measurement, measures relative performance-

Where X is the experimental and Y is the baseline

Eg: A runs program C in 9s, B runs program C in 6s
Speedup(B / A) = 9 / 6 = 1.5 times faster

What is Time?
CPU Execution Time = CPU clock cycles * Clock cycle time-

CPU clock cycles = number of instructions * (average) cycles per instruction-

Execution Time = Instruction count * CPI * Clock cycle time

Modern machines can change cycle time/clock rate for efficiency

Measuring Performance
Thursday, April 7, 2022 3:28 PM

 CSE 141 Page 9

Type Instruction Count CPI Clock Cycle Time

Programmer Yes No No

Compiler Yes Maybe (Optimization) No

Instruction Set Architect Yes Yes Yes

Machine Architect No Yes (RCA vs Carry Lookahead Adder) Yes

Hardware Designer No No Yes (change the critical delay through routing)

Material Physics No No Maybe (change the property of materials)

Who/What Affects Performance
Thursday, April 7, 2022 4:18 PM

 CSE 141 Page 10

N more cores does not mean it will be N times faster!

The red, unparallelizable portion of the workload limits
the maximum performance improvement in parallelism.

Amdahl's Law, Parallelization
Thursday, April 7, 2022 4:32 PM

 CSE 141 Page 11

Idea: Each instruction takes exactly one cycle
Advantage: One clock cycle per instruction-

Disadvantage: Long clock cycle-

Idea: A single cycle machine's cycle time must be the time it takes for
the slowest instruction.

Def: We will use a simplified MIPS instruction set

Note: There is no multiply instructions because it is very slow

Review: Clock cycle time is dependent on the longest
delay in a combinational path between storage elements

Single Cycle Machines
Tuesday, April 12, 2022 3:19 PM

 CSE 141 Page 12

Idea: Chain multiple 1-bit ALUs to create N-bit ALUs

ALU Design
Tuesday, April 12, 2022 3:39 PM

 CSE 141 Page 13

Idea: Combine many Registers into a Register File

Def: A register file could look like:

Registers, Register File
Tuesday, April 12, 2022 4:14 PM

 CSE 141 Page 14

Def: A memory module might look like:

Memory Interface
Tuesday, April 12, 2022 4:17 PM

 CSE 141 Page 15

Def: A final design for the datapath might look like:

Datapath Design
Thursday, April 14, 2022 3:28 PM

 CSE 141 Page 16

Understanding The Datapath Signals Examples
Thursday, April 14, 2022 3:39 PM

 CSE 141 Page 17

 CSE 141 Page 18

The signals in red are used to decide how the Datapath operates, information taken from opcode:

ALU Control:

Control Unit:

Recall:

Control Path Signals
Thursday, April 14, 2022 3:47 PM

 CSE 141 Page 19

Control Path Summary
Thursday, April 14, 2022 4:37 PM

 CSE 141 Page 20

Problem: Some instructions may take much longer than other instructions
Idea: Break large instructions into smaller tasks, each one taking one cycle

It’s essentially the same Datapath as the single cycle, but we use registers to store intermediate step

Execution steps:

A multi cycle machine might look like:

Multiple Cycle Machines
Thursday, April 14, 2022 4:41 PM

 CSE 141 Page 21

Idea: we can break an instruction into multiple tasks, and we can pipe tasks to increase throughput

Example: if an instruction has tasks: instruction fetch -> decode, register fetch -> execute -> memory access -> write back
Then a pipelined machine has the latency and throughput:

Higher maximum throughput, but control logic is more complicated

The Execution time = instructions * 1 * CT, the CPI is 1 because an instruction is completed every cycle

Note: to avoid conditions where a piece of hardware is used by multiple instructions at the same time, all instructions should
have the same stages in the same order

Pipelines, Pipelined Machines
Tuesday, April 19, 2022 3:29 PM

 CSE 141 Page 22

Idea: the control signals for a pipeline processor are the same as the single cycle processor. They can be generated once, th en
use DFFs to propagate control signals as they follow their instruction. Control flows through the pipeline along with data.

A possible design for the Pipelined Machine is:

The control signals are identical, just split into stages:

Control Signals, Design
Tuesday, April 19, 2022 3:55 PM

 CSE 141 Page 23

Problem: The next instruction in the pipeline may depend on a writeback from the previous instruction!
Example:

Software Solutions:
Use nop instruction (add $0 $0 $0) -

Nop Example:

Hardware Solutions:
Stalling the pipeline until first instruction has resolved -

Forwarding, send result of ALU back to register file before the first instruction completes-

A possible implementation of stalling and forwarding might look like:

Data Hazards
Thursday, April 21, 2022 3:37 PM

 CSE 141 Page 24

 CSE 141 Page 25

Idea: We can insert nops in the pipeline to resolve Data Hazards
Stalling Example:

Note that stalling the second instruction resolves the future data hazards

Implementation:
Set control signals to ID/EX Registers to 0 (send a new nop instruction)-

Set PCWrite to 0 (don't increment)-

Set IF/ID Register write to 0 (keep trying to decode the next instruction until it is safe to run)-

The register write address and RegWrite signals are stored through the stages of the pipeline.
Use these signals to determine whether to stall.

Stalls should occur after fetch but before decode.

Stalling
Thursday, April 21, 2022 4:00 PM

 CSE 141 Page 26

Idea: Forward the ALU's result ahead of time.
Forwarding Example:

Can handle EX hazards, MEM hazards, and also WB hazards

Cannot handle every hazard with forwarding because we want to only forward values in registers

At the end of Execute and Memory stages, we can send the result to the beginning of another instruction's Decode or
Execute stage

Forwarding
Thursday, April 21, 2022 4:33 PM

 CSE 141 Page 27

Idea: We may execute code after branches before resolving the branch outcome

Solution:
Use stalling: stall the pipeline until the branch decision is resolved-

Guess: keep doing the instructions until the decision is resolved-

Implementation:
Branch Target Buffer: keeps track of addresses which are branches, allows us to tell when a branch will be fetched-

Reduce Branch delay: move branch outcome to the decode stage by adding comparator to register file outcome-

Branch delay slot: instruction after the branch will always executed even if the branch is taken-

Fill branch delay slot with:
Instructions before the branch (must not violate dependencies)○

Instructions after the branch which will be overridden if the branch is taken○

Instructions after the branch target which will be overridden if the branch is not taken○

Branch prediction: try to guess which path will be taken-

In practice, modern machines have large branch penalties and therefore would have huge branch delay slots which is not ideal

Branch Hazards
Tuesday, April 26, 2022 3:59 PM

 CSE 141 Page 28

Problem: Predicting always taken or including branch delay slots is not useful when the pipeline becomes large

Solution: Modern branch prediction strategies:
Static predictors: for branch B, always take the same branch-

Dynamic predictors: for branch B, make a new prediction every time the branch is called
What did the branch take previously? Keep table of previous predictions○

1 bit predictor: keep table of 1 previous branch result, predict the same result in the future○

2 bit predictor: keep table of 2 previous branch results, used state machine shown below to predict○

2 level local predictor: store a pattern of branch histories and then use pattern as address for another predictor○

Global history register: keep branch pattern for all branches that have run and feed into predictor○

Combining branch predictors: use multiple branch predictors and have a chooser to pick the best predictor○

-

Tradeoffs? Static predictors are easier to implement but dynamic predictors are more accurate

Branch Prediction
Thursday, April 28, 2022 3:33 PM

 CSE 141 Page 29

Idea: Because pattern history tables, branch predictor state tables, etc have limited size:
then multiple branches may overlap in the table, creating aliasing

Aliasing
Thursday, April 28, 2022 4:41 PM

 CSE 141 Page 30

The Standard Machine has:
5 pipeline stages-

Stalls and forwarding enabled-

Early branch resolution (branch outcome computed in ID stage), one branch prediction slot-

Some sort of branch prediction-

The Standard Machine
Thursday, April 28, 2022 4:45 PM

 CSE 141 Page 31

Advanced Pipelining
Tuesday, May 10, 2022 3:24 PM

 CSE 141 Page 32

Jumps: we can use a BDS to avoid stalls or flushes
Jumps resolved in ID stage can have 0 stalls/flushes with a BDS-

Problem: We want to eliminate the flush for jumps
Solution: If IF stage can remember it is a jump, we can jump immediately before the next cycle

Use a table to store the PC values for jumps: Jump History Table (JHT)-

Can be used for both J and Jr-

Predict that the jump will go to the same destination every time-

Jump Predictors, Jump History Table
Tuesday, May 10, 2022 3:31 PM

 CSE 141 Page 33

Summary of jump and branch information requirements and prediction accuracy

Data structures used to store information for each

Return Address Stack: Is the instruction a return? Where to return?
Create table to store whether instruction is a return.-

Create a stack with return addresses. -

Branch/Jump Predictor Data Structures
Tuesday, May 10, 2022 4:02 PM

 CSE 141 Page 34

Def: Exceptions are another type of non-sequential control flow
Exceptions are typically asynchronous and non-deterministic-

Any unexpected change in control flow-

Def: Interrupts are any externally caused exceptions

Types of exceptions:
Arithmetic exceptions-

Illegal memory access-

Illegal instruction-

Idea: On exception we need to
Save the PC-

Record nature of exception or interrupt-

Transfer control to OS-

Handling Exceptions:
Add exception PC, which holds PC value of exception-

Add exception cause register, hold information about exception-

Controls to write to exception PC and exception cause PC-

Note: Exceptions must be caught early in the pipeline to avoid any permanent changes to state from later instructions
For the standard machine, the latest exception must be raised during the memory stage-

Exceptions and Interrupts
Thursday, May 12, 2022 3:50 PM

 CSE 141 Page 35

Idea: most modern processors have deeper pipelines and:
Superscalar execution

Idea: use many copies of the same processor and work on multiple instructions in parallel
Limitation: can only work on independent instructions in parallel because not all components (memory) can be parallel

-

Out-of-order execution
Idea: find multiple instructions which are independent and execute them out of order
Limitations: Difficult to build

-

Very-large-instruction-word
Idea: make instruction words encode multiple tasks in one word, push solving parallelism to the compiler
Limitation: relies on the performance of the compilers

-

Note: a N-issue superscalar processor fetches N instructions at the same time

Dynamic Scheduling or Out-of-order scheduling
Idea: Begin execution of instruction as soon as all of its dependencies are satisfied

-

Register Renaming:
Idea: make more physical registers than used by the compiler, avoids write after write hazards

-

Modern Processors
Thursday, May 12, 2022 4:17 PM

 CSE 141 Page 36

Note: made an assumption that memory can be accessed in 1 cycle, which is generally true for lower power processors

Problem: Faster processors may take hundreds of cycles to access memory
Solution: Store important data closer to the processor core in a cache structure

Should be a small structure on order of KB to reduce delay-

Should be close to the processor to reduce latency-

Locality:
Store data which is close in space or time close to the processor-

near in time: we will often access the same data again very soon -

near in space: our next access is often very close to our last access-

Cache uses a tiered structure to manage locality

Realistic Memory and Caches
Tuesday, May 17, 2022 3:26 PM

 CSE 141 Page 37

Cache hit: Access where the data is found in the cache
Cache miss: An access where the data is not in the cache
Hit time: Time to access the cache
Miss penalty: time to move missed data from further level to closer
Hit ratio: percentage of the time data is found in the cache
Miss ratio: (1 - hit ratio)

Cache block/line size: amount of data that gets transferred on a cache miss
Implicitly supports spacial locality-

Instruction cache: holds instructions
Data cache: holds data
Unified cache: golds both instructions and data

Problems to consider:
On memory access:

how to know if it is a hit or miss○

-

On cache miss:
Where to put new data? ○

What data to throw out? ○

How to remember what data was saved?○

-

Implementation:
Size of cache is inversely proportional to speed. Smaller = faster-

Caches will store minimal needed bits to work-

Cache Fundamentals
Thursday, May 19, 2022 3:37 PM

 CSE 141 Page 38

Where to put? Anywhere
What to replace? Least recently used

Fully Associative Cache
Thursday, May 19, 2022 3:50 PM

 CSE 141 Page 39

Where to put? A specific spot
What to replace? Whatever is in the spot

Note: Uses specific bits to determine row that the tag (remaining bits) is placed

Direct Mapped Cache
Thursday, May 19, 2022 3:53 PM

 CSE 141 Page 40

Where to put? A specific row and some column
What to replace? Something from that row which was least recently accessed

Associativity = number of blocks per set

Benefit of associative caches:
Higher hit rate-

Detriment of associative caches:
Slightly larger (longer tags)-

Slightly slower (need to do a linear search)-

N-way Set Associative Cache
Thursday, May 19, 2022 4:15 PM

 CSE 141 Page 41

Idea: Store more words per cache block entry

But: There are diminishing returns for larger cache sizes

Larger Cache Blocks
Thursday, May 19, 2022 4:26 PM

 CSE 141 Page 42

Note: Cache size only considers cache data, not metadata (tags, valid bits)

Cache Performance:
CPI = BCPI + MCPI
BCPI = base CPI assuming perfect memory
MCPI = miss CPI, number of cycles per instruction when a miss occurs

Cache Parameters, Cache Performance
Thursday, May 19, 2022 4:36 PM

 CSE 141 Page 43

Procedure for accessing memory location:

Example:

Cache Alignment: Data which is loaded into the cache must be data which shares the same index and tag

Handling Cache Accesses, Cache Alignment
Tuesday, May 24, 2022 3:37 PM

 CSE 141 Page 44

A simplified view of the Data Memory module expansion with cache

In the pipeline:

Connecting Cache to the Pipeline
Tuesday, May 24, 2022 3:50 PM

 CSE 141 Page 45

Problem: Stores don’t necessarily stall the CPU, but they change contents of memory
Need to guarantee the caches and memory are all synced together when a store is executed-

Empty cache might need to pull from memory before storing a word in the cache block-

Solution: policy decisions for stores

Cache Stores
Tuesday, May 24, 2022 4:26 PM

 CSE 141 Page 46

Compulsory miss: first time access to data
Capacity miss: Missed only because the cache isn't large enough
Conflict miss: Missed because data maps to same line as other data and was forced out

Solutions:
Compulsory misses: larger block sizes to load more initial values
Capacity misses: more capacity
Conflict misses: more associativity

Types of Cache Miss, Solutions to Misses
Tuesday, May 24, 2022 4:39 PM

 CSE 141 Page 47

Terms:
Average Memory Access Time (AMAT) = hit time + miss rate * miss penalty

Ways to improve AMAT:
Decrease hit time-

Decrease miss rate-

Decrease (observed) miss penalty-

Idea: Victim cache stores recently evicted cache entries
Alleviates conflict misses-

Idea: Prefetching accesses memory before core needs it
Can be done in hardware-

Can be done in software after profiling program for possible speedups-

Separate thread to prefetch data for another (speculative precomputation)-

Reducing memory stalls:
Non-blocking cache: cache that can handle new requests after a miss-

Hit-under-miss: can service hits after one miss, stalls on second miss-

Miss-under-miss: can have many outstanding misses before a stall-

Tolerating cache misses:
Stall on miss (no tolerance)-

Stall on use (keep doing other instructions until miss is used)-

Non-blocking caches (service other requests after a miss)-

Out-of-order execution (execute other instructions out of order)-

Multithreaded execution (run multiple processes while waiting for memory)-

Advance Cache Architectures, Handling Misses
Thursday, May 26, 2022 3:29 PM

 CSE 141 Page 48

Problem: what happens if two programs in the processor uses the same
memory addresses? What happens if a program accesses memory that
doesn't exist?

Idea: Abstract physical memory into virtual space
To program, looks like all of memory is available-

Maps virtual addresses to actual physical memory, uses disk or larger
memory to handle overflows

-

Def: another level in cache/memory hierarchy
Allows use of large memory space (on disk)-

Terminology:

Difference from memory caches:
Miss penalty of millions of cycles-

Design Decisions:
Large pages (4KB to MB)-

Associative mapping (usually fully associative)-

Software handling of misses but not hits-

Write-back only-

Virtual Memory
Thursday, May 26, 2022 3:52 PM

 CSE 141 Page 49

Translate addresses by changing only a few bits of the address
Only translate the high order bits-

Leave lower bits the same, defines the page size (analogous to block offset)-

TLB: Translation Lookaside Buffer stores some virtual page data

Note: Cache lookup is now a serial process
V->P translation through TLB-

Get index-

Read tag from cache-

Compare-

Improvements:
If V->P does not change the index, then they can be done in parallel, so index needs to come from only the page offset-

Virtual Address Translation
Thursday, May 26, 2022 4:03 PM

 CSE 141 Page 50

