Computer Architecture

Tuesday, March 29,2022 3:18 PM
Compuber Architeclure

Tousbruc bion Set Architeclone: FHow o wser “talks ¢o the machine

- The okavtca(wpon in berface Lebmeen el T Lk e

on the machine ok hardweare Lot e~ecbey il

that part of the architecture that is visible to the programmer
— available instructions {“opcodes”)
— number and types of registers
— instruction formats
— storage access, addressing modes
— exceptional conditions

l\/lacbl;wc @fganhocéfon : How the MUOh ine looks

Cﬂcle,f swwc”csé anit of time in o fmf—‘“"ﬂf"

Purac”&hbm: a,bz‘l/'ézj [J‘O MW(éT{”‘ {L\/‘y\(lb aé ence

—
Instructibrstiuction Real-world example
Fetch Fgtch

ARM's Thumb instruction set is (mostly)
16-bit instructions on a 32-bit machine

ISA design makes fetch “freely parallel”

SM{)O’SC“(U-P i (zf\(ecwée L ore than one ras €y uction per cdo/c
: Instruction Duplication is easy but expensive...
L "]
[How to do parallelism well?
Instruction + Second half of this class
Decode - CSE148
Operand
Fetch
—
[Execute || Execute | [Execute |
i I 1
P,‘]’)(,llrn,'nﬁ : JV{fl“P {'abfib EO Tncreuse -ébl/anj)ﬂpl«é W/ou.é I'WCr-zog;r.Ag

Overlapping parts of a large task to increase throughput without
decreasing latency

— Key insight: The less work you do in one step, the faster each step can finish

Instruction | [Instruction | | Instruction Instruction
Fetch Fetch Fetch Fetch
i e . {
Instruction Instruction ’ Instruction Instruction
‘ Decode Decode Decode Decode
4) !
Operand Operand Operand ‘ Operand ‘
Fetch Fetch Fetch | Fetch |
; + + : ! LT T
[Execute [Execute [Execute [Execute |

I

CSE 141 Page 1

Iu.(-(ucj

Designing ISA

Thursday, March 31, 2022 3:35 PM

Key Questions:
- Operations
© How many?
o Which ones?
- Operands
© How many?
O Location
o Types
o How to Specify?
- Instruction Format
o Size (bits)
o How many formats?

CSE 141 Page 2

History of ISA, Comparing ISA

Thursday, March 31, 2022 4:10 PM

Historically, many classes of ISAs have been explored, and
trade off compactness, performance, and complexity

Style # Operands Example Operation

Stack 0) add tosay « tosy + tosag
Accumulator 1 add A acc « acc + mem[A]
General Purpose 3 add A B Rc mem[A] « mem[B] + Rc
Register 2 add A Rc mem[A] <« mem[A] + Rc
Load/Store: 3 add Ra Rb Rc Ra « Rb + Rc

load Ra Rb Ra « mem[Rb]
store Ra Rb mem[Rb] « Ra

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register
(register-memory) (load-store)
Push A Load A ADD C,A, B Load R1LA
Push B Add B Load R2,B
Add Store C Add R3,R1,R2
Pop C Store C,R3

CSE 141 Page 3

MIPS Design, Instruction Formats, Addressing Modes

Thursday, March 31, 2022 3:46 PM

- Fixed Length Instructions (MIPS)

O Easy fetch and decode

o Simplify pipelining and parallelism
- Variable-length instructions (x86, VAX)

o Multi-step fetch and decode

o Much more flexible and compact instruction set
- Hybrid instructions (ARM)

o Middle ground

MIPS Instructions are 32 bits long

- Many different instruction formats
o Complicates decoding
o Uses more instruction bits to specify format
o Allow usage of variable length ISA

MIPS has 3 instruction formats, fixed 32 bit instruction size

- Operands
o Registers (32 options)
o Memory (2732 locations)

- Registers are easy to specify, close to processor (fast access)

- Load-store architectures
o Normal arithmetic instructions only use registers

o Access memory only with explicit load/store instructions

MIPS most arithmetic instructions have 3 operands

CSE 141 Page 4

Example of instruction encoding:

6 bits Sbits Sbits Sbits 5 bits 6 bits

Register R-type [opcode [rs | t [rd | shamt[funct |
Immediate 1-type [opcode l rs I rt l i di]
Jump J-type | opcode | target |

opcode=0, rs=1, rt=2, rd=5s, sa=0,
000000 00001 00010 00101 0000

00000000E01000100010100000100000

0x00222420

- Addressing modes

o Register direct - R3

o Immediate (literal) - #25
Direct (absolute) - M[1000]
Register indirect - M[R3]
Base Displacement - M[R3 + 1000]
Base Index - M[R3 + R4]
Scaled Index - M[R3 + R4 * d + 1000]
Autoincrement - M[R3++]
Autodecrement - M[R3--]
Memory Indirect - M[M[R3]]

0O O O 0O 0O O O O

funct=32
100000

MIPS uses Register direct, Immediate, Base Displacement

Memory Structure

Thursday, March 31, 2022 5:24 PM

Memory can be represented as an array of bytes

MIPS is a 32 bit word architecture, each instruction and data value is 32 bits, or 4 bytes

Viewed as a large, single-dimension array, with an address.
A memory address is an index into the array

"Byte addressing" means that the index (address) points to a byte of
memory.

() | & bits of data

& hits of data

(-

8 bits of dats

8 bits of dats

B bits of data

B bits of data

B bits of data

L=V

Bytes are nice, but most data items use larger "words"
For MIPS, a word is 32 bits or 4 bytes.

()| 32 bits of data

4 | 32 biis of data

& | 32 bits of data

12| 32bits of data

Words are aligned

i.e., what are the least 2 significant bits of a word address?—= [, m 7 25 q/‘w:{‘S oo |
- ecauge

CSE 141 Page 5

WOIWC.S ore van‘sq,él; éd L/

Control Flow, MIPS Jump/Branch Instructions

Tuesday, April 5, 2022 3:42 PM

Jumps Jumps are unconditional control flow.
o Used to implement GOTO, initialization What do they look like in MIPS?
- Procedure call (jump routine) * need to be able to jump to an absolute address sometimes
o Used to implement functions » need to be able to do procedure calls and returns
- Conditional Branch Jomp, J-2vos | [omone | target]
o Used to implement if-the-else, loops .
* Jump j 10000 => PC = 10000

" _ * Jumpandlink jal 20000 => $31 = PC + 4 and PC = 20000
- Control flow specifies two things — used for procedure calls

o Condition to jump * Jump register jr $31 => PC = $31
o Location to jump to — used for returns, but can be useful for lots of other things
— Q: how to encode jr instruction?
Jump: j <Location>
} r~ ASes Lhe /2 ézyvc S‘-owm q,f
Jump and link: jal <Location>
$31=PC+4 Branch on Equal: beq r1, r2, offset
PC = (PC + 4) + offset * 4
Jump register: jr $31
PC=3$31 Branch on Not Equal: bne r1, r2, offset
_ _ PC = (PC + 4) + offset * 4
Instruction program counter

E i Store less than: slt $1, $2, $3 -> if (52 < $3)
set $1=1, otherwise $1=0

jump destination address

CSE 141 Page 6

MIPS Instructions

Tuesday, April 5, 2022 3:36 PM

Key Points

* MIPSis a general-purpose register, load-store, fixed-instruction-length
architecture.

* MIPS is optimized for fast pipelined performance, not for low instruction
count

» Historic architectures favored code size over parallelism.

* MIPS most complex addressing mode, for both branches and
loads/stores is base + displacement.

Arithmetic:
- add, subtract, multiply, divide
- but NOT: mod, exponents, add with carry, sin, cos
Logical
- and, or, shift left, shift right, xor
- but NOT: nand, nor, bit clear
Data Transfer
- load word, store word, load half, store half
- but NOT: post increment load/store, direct operations on memory contents, load/store multiple

CSE 141 Page 7

MIPS operands

Ss’J—Ss? B StO g:t 9 $zero , Fast locations for data. In MIPS data must be in reg|sters to perform
32 registers Sa0-3%a3, Sv0-Svl, Sgp. arithmetic. MIPS register $zero always equals 0. Register $atis
$fp, S5sp, Sra, Sat reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
2% memory | Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure cals.
MIPS assembly language
s Category e rstrction sl : ~oMeaning: : :
add add Ssl, $s2, 553 = $s2 + 553 Three operands data inregisters
Arithmetic subfract sub $sl1, $s2, $§s3 551 = $s2 - §s3 Three operands; data inregisters
add immediate addi Ss1, S$s2, 100 Ss1 = Ss2 + 100 Used to add constants
load word lw $sl, 100 (3s2) $s1 = Memory[S$s2 + 100] [Word from memory to register
store word sw S5s1, 100 (5s52) Memory[$s2 +100] = $s1 |Word from register to memory
Data transfer |loadbyte 1b S$s1, 100 (S5s2) $s1 = Memory[$s 2 + 100] |Byte from memory to register
store byte sb $s1, 100 (5s2) Memory[Ss2 + 100] = $s1 |Byte from register to memory
load upper lui S$s1, 100 $s1=100*2 " Loads constant in upper 16 bits
immediate
branch on equal beg $sl1, $s2, 25 if(Ss1 == $s2)gotfo Equal test; PC-relative branch
PC +4 + 100
branch on notequal bne S5s1, $s2, 25 if(5s1 !'= 5s2)goto Not equal test; PC-relative
PC + 4 + 100
Conditional
branch set on less than slt Ss1, S$s2, S$s3 if(5s2 <« 5=3) S$s1=1; Compare less than; for beq, bne
elsess1 =0
set less than slti sl, SsZ, 100 if(3s2 < 100) $s1=1; Compare less than constant
immediate elsess1 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr Sra goto Sra For switch, procedure return
tional jump jump and link jal 2500 5ra=PC + 4; go to 10000 |For procedure call

CSE 141 Page 8

Measuring Performance
Thursday, April 7, 2022 3:28 PM

- Time to do a task

o Execution time, response time, latency
- Tasks per unit time

o Throughput, bandwidth

- Ways to represent performance

o Execution time
Throughput (operations / time)
Frame rate
Responsiveness
Performance / Cost
Performance / Power
Performance / Energy

O O O O O O

- Ways to measure execution time
O Program reported time?
o Wall-clock time?
o User CPU time?
o User + Kernel CPU time?

CSE 141 Page 9

1
Performancey, = —————— , for program X
Execution Timey

- Only has meaning in context of a specific program
- Not useful as absolute measurement, measures relative performance

Performance Execution Time
Speedu = 2T PATIEEX o Y = n
P P (X7Y) Performancey Execution Timey

Where X is the experimental and Y is the baseline

Eg: A runs program Cin 9s, B runs program Cin 6s
Speedup(B/A) =9/ 6 =1.5times faster

What is Time?

- CPU Execution Time = CPU clock cycles * Clock cycle time

- CPU clock cycles = number of instructions * (average) cycles per instruction
Execution Time = Instruction count * CPI * Clock cycle time

Modern machines can change cycle time/clock rate for efficiency

Who/What Affects Performance

Thursday, April 7, 2022 4:18 PM

Type Instruction Count CPI Clock Cycle Time
Programmer Yes No No
Compiler Yes Maybe (Optimization) No
Instruction Set Architect Yes Yes Yes

Machine Architect No Yes (RCA vs Carry Lookahead Adder) Yes
Hardware Designer No No Yes (change the critical delay through routing)
Material Physics No No Maybe (change the property of materials)

CPU Execution Time

= Instruction Count X CPI

X Clock Cycle Time

Number of Clock Cycle Time
nstructions

Same machine,
different programs

Sam programs,
different machine,
same ISA

Same programs,
different machines

|
D Floren t

Same

Ol’(’{wfﬁt(_‘

CSE 141 Page 10

D Heec€

D"Hum &

Dt event

Sam (A (,453’“»«2(1:)

'Dchren ‘6

Different

Amdahl's Law, Parallelization

Thursday, April 7, 2022 4:32 PM

Execution time Execution Time Affected _ _
= + Execution Time Unaffected

Amount of Improvement

after improvement

1.0
N more cores does not mean it will be N times faster!

1/.55=1.82

The red, unparallelizable portion of the workload limits
| 1/325=3,07 the maximum performance improvement in parallelism.

<10

CSE 141 Page 11

Single Cycle Machines

Tuesday, April 12, 2022 3:19PM

Idea: Each instruction takes exactly one cycle Review: Clock cycle time is dependent on the longest
- Advantage: One clock cycle per instruction delay in a combinational path between storage elements
- Disadvantage: Long clock cycle
Clk | |
Idea: A single cycle machine's cycle time must be the time it takes for m— | Don't Care l’—"’—' 1]

the slowest instruction.

Def: We will use a simplified MIPS instruction set
memory-reference instructions: 1w, sw

arithmetic-logical instructions: add, sub, and, or, slt

All storage elements are clocked by the same clock edge

control flow instructions: beqg
Note: There is no multiply instructions because it is very slow

CSE 141 Page 12

ALU Design

Tuesday, April 12, 2022 3:39 PM

Idea: Chain multiple 1-bit ALUs to create N-bit ALUs
Binvert Carryln Operation

1

a0 —{ Carryln

n) The full ALU

CarryOut|

LA B Bin\fel"t Carer 0per-

al —| Carryin

b1 — ALU1 > Result1
0 — Less
CarryOut| © X
Ll or O /X I
a2 —»| Carryln
b2 —»| ALU2 » Result2 add @ O

0 — Less

7

Hl“m sub l l 2

I Do : z
' 3

beq I l

i ' | Carryln | S lt l |

L

a31 —{ Carryln ——————— Result31
b31 —» ALU31 Set
0 —> Less » Overflow

sign bit (adder output from bit 31)

CSE 141 Page 13

Registers, Register File

Tuesday, April 12, 2022 4:14 PM

Storage Element: Register

» Review: D Flip Flop >

Ol

* New: Register

— Similar to the D Flip Flop except b
« N-bitinput and output

« Write Enable input Write Enable
— Write Enable:) Data In Data Out
* 0:Data Out will not change " -

* 1: Data Out will become Data In (on the clock edge)

Clk
Idea: Combine many Registers into a Register File

Def: A register file could look like:

Wrile? — RegWrite

nha € G Wh'éc? s

Write Data § 37 32-bit

32 Registers
RR1

(A/L\:CA /chh(ms? — 5

Cl‘,c/< —=> Clk

CSE 141 Page 14

Memory Interface

Tuesday, April 12, 2022 4:17 PM

Def: A memory module might look like:

Write? ———— MemWrite

Write Qata

32
Clk

Address

32

k eatd /" > MemRead

CSE 141 Page 15

=

Read Datg
32

Datapath Design

Thursday, April 14, 2022 3:28 PM

Def: A final design for the datapath might look like:

CSE 141 Page 16

Instruction [S 0]

Add
AL
4 Add resut
RegWrite
|
Instruction [25 21] Read
PC Read ‘ register 1 dal:\’tgas
address Instruction [20 16] Read
Instruction register 2 Zero
1 ead
31 0] L> " Wri_let data 2 ALU re@bl%l
) register
Instruction nstruction (15 111[%] |Wrte
memory *10|”ldata Registers
|—J..‘_..._' -
Instruction [15 Q] 1‘6 Sign |32 /7~ \
™ extend [aLU)

oxcE =

Understanding The Datapath Signals Examples

Thursday, April 14, 2022

Ignoring control -

which instruction
does this active
datapath represent

A. R-type
@ Llw
C. sw
D. Beq
E. None of the above
Ignoring control -

which instruction
does this active
datapath represent

lw
SW

@ R-type
B.
C.
D. Beq
E.

None of the above

Ignoring control -

which instruction
does this active
datapath represent

R-type
lw
sw

A
B.
C.
(D) Beq
E.

None of the above

3:39 PM

PCl

PCi

PC

Add

Read
address

Instruction
[31 0]

Instruction
memory

Instruction [25 21

Read
address

Instruction
3 0]

Instruction
memory

Add

Read
address

Instruction
[31 0]

Instruction
memory

CSE 141 Page 17

Instruction [25 21

Instruction [25 21

-
M
nstruction [15 11]| %
0

RegDst

PCSr

ALl
Add ot

Shift
left 2

ALUSrc

RegWrite
1

Read
register 1 Read
Read data 1
register 2

) ead
Write data 2
register
Write .
data Registers

Instruction [S 0]

o xc

MemWrite

MemtoReg

ALUOp

MemRead

PCSr

RegWrite
l

Read
register 1

o xc

MemWrite
|

MemtoReg

Read
Address data

Write Data

data Mmemory

MemRead

RegWrite
|

Read
register 1 Read
Read data 1
register 2

) ead
Wirite data 2
register
Wirite

*|data__ Registers

16

Instruction [S 0]

32

u
AL p
. Add osult °
left 2
MemWrite
ALUSrc Zer - MemtoReg
1 ALU ALU
result
X
0
MemRead
ALUOp

PCSr

I . l Add u
= X
gnorlng co‘ntro . p— Add Allit 0
which instruction e s -
does this active | left 2
datapath represent i Read
Read register 1 Read MemWrite
Pc address Read data 1 ALUSTC - MemtoReg
A. R-type Instruction register 2 o ! €
(31 0] Wite data® AU AL
B. lw ! data 2 resu
: Instruction ﬁ.;ﬂe' i
@ Sw memory - datlae Registers
D. Beq
E. None of the above struct
= MemRead
Instruetion [5 0]
ALUOp

CSE 141 Page 18

Control Path Signals

Thursday, April 14, 2022 3:47 PM

The signals in red are used to decide how the Datapath operates, information taken from opcode:

Add

Instruction [25 -21] . Read
PC 2:::355 register 1 Read
Instruction [20 -18] Read data 1
Instruction regismhz
a1 0O egisters Read
In;l::ncg;n [31 q e data 2 Address Ffj?z: :“
] Instruction [15 -11] m Dsta :I
Write memeary 0
. data
Instruction [15 -0] 16 Sign :? ,."/ \‘.IJ -
N extend [N [au |
Instruetion [5-0] ‘-.\ /"
L1
ALU Control:
Recall:
Instruction | ALUOp | Instruction | Function | Desired | ALU
opcode operation code ALU control
action input
Iw 00 load word XXXXXX add 010
SW 00 store word | XXXXXX add 010
beq 01 brancheq |xxxxxx |[subtract |110
R-type 10 add 100000 | add 010
R-type 10 subtract 100010 | subtract | 110
R-type 10 AND 100100 | and 000
R-type 10 OR 100101 or 001
R-type 10 slt 101010 slt 111
Control Unit:
Memto-| Reg Mem Mem
Instruction| RegDst | ALUSrc| Reg Write | Read | Write | Branch | ALUOp1| ALUpO
R-format 1 O O 1 o O O 1 0
1w O | [l (@ O 0 0
sSw X l X o O (o) 0 0
beq X O X O 0 o (0 1

CSE 141 Page 19

Control Path Summary

Thursday, April 14, 2022

4:37 PM

F3

ALUOp1

F2

F (5-0)

Control Truth Table
R-format | Iw SW beq
Opcode 000000 100011 | 101011 {000100
RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
Outputs | MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOpl 1 0 0 0
ALUOpO 0 0 0 1

CSE 141 Page 20

F1

Operation

Inputs
Op5

Opé

Op3

Op2

Op1

Op0]

R-format|

Qutputs

RegDst

) ALUSrc

MemtoReg

) RegWrite

MemRead

Branch

ALUOp1

—— ALUOpO

Multiple Cycle Machines

Thursday, April 14, 2022 4:41 PM

Problem: Some instructions may take much longer than other instructions
Idea: Break large instructions into smaller tasks, each one taking one cycle

It’s essentially the same Datapath as the single cycle, but we use registers to store intermediate step

Execution steps:

Step R-type | Memory | Branch
Instruction Fetch IR = Mem|PC]
PC=PC+4
Instruction Decode/ A =Reg[IR[25-21]]
register fetch B = Reg[IR[20-16]]
ALUout = PC + (sign-extend(IR[15-0]) << 2)
Execution, address ALUout=A opB ALUout=A + |if (A==B) then
computation, branch sign- PC=ALUout
completion extend(IR[15-0])
Memory access or R- Reg|IR[15-11]] = memory-data =
type completion ALUout Mem[ALUout]
or
Mem|ALUout|=
B
Write-back Reg|IR[20-16]] =
memory-data

A multi cycle machine might look like:

J/#_HH“‘*
o : =

- o
EX -2

P
5 0]
3
Jump
Instruction [25 0] 26 fom\2® address [31-0]
ez
Instruction
31-26)
ool) Io1-28]
M Instruction Read
u | Address [25 21] register 1
X
Instruction Read Read
1 Mermeny [20 18] register 2 data 1
MemData) Registers | ALUOUY
Instruction Wiite Read
[15 Q] register gats 2
Wite ;
- data Instruction Wite
register data
Instruction 0
s Q] M
u
X
Memory 1
data 16 . 3z
register d Sign
M lextend
Instruction [0]

CSE 141 Page 21

Pipelines, Pipelined Machines

Tuesday, April 19, 2022 3:29 PM

Idea: we can break an instruction into multiple tasks, and we can pipe tasks to increase throughput

Example: if an instruction has tasks: instruction fetch -> decode, register fetch -> execute -> memory access -> write back
Then a pipelined machine has the latency and throughput:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

M J J J J LJ °LJ 1
Load | Ifetch Reg/Ded Exec | Mem | Wr |

Load [Ifetch Reg/Ded Exec | Mem | Wr |
Load | Ifetch Reg/Ded Exec | Mem | Wr |
Load | Ifetch Reg/Ded Exec | Mem | Wr |

Higher maximum throughput, but control logic is more complicated
The Execution time = instructions * 1 * CT, the CPl is 1 because an instruction is completed every cycle

Note: to avoid conditions where a piece of hardware is used by multiple instructions at the same time, all instructions should
have the same stages in the same order

CSE 141 Page 22

Control Signals, Design

Tuesday, April 19, 2022 3:55 PM

Idea: the control signals for a pipeline processor are the same as the single cycle processor. They can be generated once, then
use DFFs to propagate control signals as they follow their instruction. Control flows through the pipeline along with data.

A possible design for the Pipelined Machine is:

IVEX

EXMEM

[v MEMWEB
| [

| T —] A -
| X |

|

|

A
IFAD
I r\
|
| Adg 199
: [snit result
| left 2 |
i —
I
c
2 —
3
L o ™

|

Write memory

data
Write
data

Instruction /_\
16 az)
[15-0] 2 Sign- 4

extend
Instruction /
[20-16] A
=0

Instruction
[15-11]

1 Read c
register 1 ugf:‘;—‘ — :
Readmr 2 ALU il ; =
Instruction rogs
memory " T] — Lo n;w' ™ Address ::raad [T —(0
register tain 2 Data :‘
x

The control signals are identical, just split into stages:

Execution Stage Control Lines Memory Stage Control Lines Write Back Stage Control
Lines
Instruction | RegDst [ALUOpl | ALUOpO [ALUSrc | Branch | MemRead | MemWrite | RegWrite | MemtoReg
R-Format | | 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 | |
SW X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

CSE 141 Page 23

Data Hazards

Thursday, April 21, 2022 3:37PM

Problem: The next instruction in the pipeline may depend on a writeback from the previous instruction!
Example:

cCl cc2 ccs3 Cc4 CCs CCo ccr CCs
sub $2,$1,63 | M Reg :‘: DM Reg
\ /
and $12, $2, $5 IM Reg % DM

Software Solutions:
- Use nop instruction (add S0 SO SO0)
Nop Example:

ccl cc2 cc3 cc4 cCs CC6 ccr ccs
E >>
sub$2, 61,53 | Reg - DM Reg
nop M Reg i DM Reg
>
N Reg N 0
nap IM Reg = DM Reg
M Reg B} DM Reg
nop l/
>
IM Reg DM
and $12, 82, $5 |~

Hardware Solutions:
- Stalling the pipeline until first instruction has resolved
- Forwarding, send result of ALU back to register file before the first instruction completes

A possible implementation of stalling and forwarding might look like:

CSE 141 Page 24

PCWrite

IF/DWrite

LITJ

;'/ Hazard _\

ID/EX.MemRead

—| detection |
_.'\ unit /
- 1 ID/EX
| Vs \-., " WEB | EX/MEM
I"onlrolI u M W“ MEMWE
I'.. | X — ™|
N4 0 EX " -
£
u
[x
.g Registers i T N
§ L ALU
B @ Data
X
IF/D. Registerfis _
IF/ID.RegisterRt
IF/ID.RegisterRt Bl @
IF/ID.RegisterRd I I:]
ID/EX. Registerft —] L-J ‘ /—\‘_—] o
IRs I Forwardini
T— o un::jl g,l‘
~ |

CSE 141 Page 25

Stalling

Thursday, April 21, 2022 4:00 PM

Idea: We can insert nops in the pipeline to resolve Data Hazards

Stalling Example:
CCl

cC2 cC3

sub $2,%1,83 |IM

CC4

CC5 cCe cc7 CC8

DM

and $12, $2, S5

or $13, $6, $2

add $14, $2, $2

sw $15,100($2)

Reg E I

Reg

DM

Reg
g

)

Note that stalling the second instruction resolves the future data hazards

Implementation:

- Set control signals to ID/EX Registers to 0 (send a new nop instruction)
- Set PCWrite to 0 (don't increment)

- Set IF/ID Register write to O (keep trying to decode the next instruction until it is safe to run)

The register write address and RegWrite signals are stored through the stages of the pipeline.

Use these signals to determine whether to stall.

Stalls should occur after fetch but before decode.

CSE 141 Page 26

Forwarding
Thursday, April 21, 2022 4:33 PM

Idea: Forward the ALU's result ahead of time.
Forwarding Example:

iz

add $2, $3, $4 | ™M |— Re DM Reg
A\

add $5, $3, $2 IM |—] Reg %i DM Reg

Can handle EX hazards, MEM hazards, and also WB hazards

Cannot handle every hazard with forwarding because we want to only forward values in registers

At the end of Execute and Memory stages, we can send the result to the beginning of another instruction's Decode or
Execute stage

CSE 141 Page 27

Branch Hazards

Tuesday, April 26, 2022 3:59 PM

Idea: We may execute code after branches before resolving the branch outcome

Solution:
- Use stalling: stall the pipeline until the branch decision is resolved
- Guess: keep doing the instructions until the decision is resolved

Implementation:
- Branch Target Buffer: keeps track of addresses which are branches, allows us to tell when a branch will be fetched
- Reduce Branch delay: move branch outcome to the decode stage by adding comparator to register file outcome

1=]|8

- Branch delay slot: instruction after the branch will always executed even if the branch is taken
Fill branch delay slot with:
o Instructions before the branch (must not violate dependencies)
o Instructions after the branch which will be overridden if the branch is taken
o Instructions after the branch target which will be overridden if the branch is not taken
- Branch prediction: try to guess which path will be taken

In practice, modern machines have large branch penalties and therefore would have huge branch delay slots which is not ideal

CSE 141 Page 28

Branch Prediction

Thursday, April 28, 2022 3:33 PM
Problem: Predicting always taken or including branch delay slots is not useful when the pipeline becomes large

Solution: Modern branch prediction strategies:
- Static predictors: for branch B, always take the same branch
- Dynamic predictors: for branch B, make a new prediction every time the branch is called
o What did the branch take previously? Keep table of previous predictions
o 1 bit predictor: keep table of 1 previous branch result, predict the same result in the future
o 2 bit predictor: keep table of 2 previous branch results, used state machine shown below to predict

n
Not taken
Predict taken
Taken
Not taken Taken

Predict not taken

o 2 level local predictor: store a pattern of branch histories and then use pattern as address for another predictor

PHT BHT o B
T 000000 [00] E/\COLMP le: TN TN T/ ...
TN /ﬂ

001001 OPLmé}am ! Finck F branch

000000 Losleup bramch ia PHT

Use PHT s oddress in BHT | make Plco(/‘céb"
Update 3pT

Upo(mt*a PHT \,La\‘md O\LLL&%(chuLH’/
o Global history register: keep branch pattern for all branches that have run and feed into predictor

mgfutcj at éw«,(reswlt

o Combining branch predictors: use multiple branch predictors and have a chooser to pick the best predictor

Tradeoffs? Static predictors are easier to implement but dynamic predictors are more accurate

CSE 141 Page 29

Aliasing

Thursday, April 28, 2022 4:41 PM

Idea: Because pattern history tables, branch predictor state tables, etc have limited size:
then multiple branches may overlap in the table, creating aliasing

CSE 141 Page 30

The Standard Machine

Thursday, April 28, 2022 4:45 PM
The Standard Machine has:
- 5 pipeline stages
- Stalls and forwarding enabled

- Early branch resolution (branch outcome computed in ID stage), one branch prediction slot
- Some sort of branch prediction

CSE 141 Page 31

Advanced Pipelining

Tuesday, May 10, 2022 3:24 PM

CSE 141 Page 32

Jump Predictors, Jump History Table

Tuesday, May 10, 2022 3:31PM

Jumps: we can use a BDS to avoid stalls or flushes
- Jumps resolved in ID stage can have 0 stalls/flushes with a BDS

Problem: We want to eliminate the flush for jumps

Solution: If IF stage can remember it is a jump, we can jump immediately before the next cycle
- Use a table to store the PC values for jumps: Jump History Table (JHT)
- Can be used for both J and Jr

0 7 v ’\um
pC / “— %l blés CSO for Daé P £s / 10_7)

V\/—/

S

- Predict that the jump will go to the same destination every time

CSE 141 Page 33

Branch/Jump Predictor Data Structures

Tuesday, May 10, 2022 4:02 PM

Summary of jump and branch information requirements and prediction accuracy

Need to learnin Need to record Control flow Destination
instruction type history of last change prediction
before decode? destination? prediction accuracy?
accuracy?
Jump Yes Yes 100% 100%
Immediate
Jump Yes Yes 100% 7?
Register
Jump
Register to Yes No 100% ~100%
rec
Branch Yes Yes ?7?? ?27??

Data structures used to store information for each

Jump _
Immediate Jump History Table
Jump .
Register Jump History Table
JRto $ra Return Address Stack
Branch Branch History Table

Return Address Stack: Is the instruction a return? Where to return?
- Create table to store whether instruction is a return.
- Create a stack with return addresses.

CSE 141 Page 34

Exceptions and Interrupts

Thursday, May 12, 2022 3:50 PM

Def: Exceptions are another type of non-sequential control flow
- Exceptions are typically asynchronous and non-deterministic
- Any unexpected change in control flow

Def: Interrupts are any externally caused exceptions

Types of exceptions:
- Arithmetic exceptions PCWrite EPCWrite
- lllegal memory access
- lllegal instruction

—
Idea: On exception we need to Interrup] =
- Save the PC Handler
- Record nature of exception or interrupt Address PCSource
- Transfer control to OS CauseWrite

Handling Exceptions:
- Add exception PC, which holds PC value of exception
- Add exception cause register, hold information about exception IntCause
- Controls to write to exception PC and exception cause PC

Note: Exceptions must be caught early in the pipeline to avoid any permanent changes to state from later instructions
- For the standard machine, the latest exception must be raised during the memory stage

CSE 141 Page 35

Modern Processors

Thursday, May 12, 2022 4:17 PM

Idea: most modern processors have deeper pipelines and:
- Superscalar execution
Idea: use many copies of the same processor and work on multiple instructions in parallel
Limitation: can only work on independent instructions in parallel because not all components (memory) can be parallel
- Out-of-order execution
Idea: find multiple instructions which are independent and execute them out of order
Limitations: Difficult to build
- Very-large-instruction-word
Idea: make instruction words encode multiple tasks in one word, push solving parallelism to the compiler
Limitation: relies on the performance of the compilers

Note: a N-issue superscalar processor fetches N instructions at the same time
- Dynamic Scheduling or Out-of-order scheduling
Idea: Begin execution of instruction as soon as all of its dependencies are satisfied

- Register Renaming:
Idea: make more physical registers than used by the compiler, avoids write after write hazards

CSE 141 Page 36

Realistic Memory and Caches

Tuesday, May 17, 2022 3:26 PM

Note: made an assumption that memory can be accessed in 1 cycle, which is generally true for lower power processors

Problem: Faster processors may take hundreds of cycles to access memory
Solution: Store important data closer to the processor core in a cache structure
- Should be a small structure on order of KB to reduce delay
- Should be close to the processor to reduce latency

Locality:
- Store data which is close in space or time close to the processor
- near in time: we will often access the same data again very soon
- near in space: our next access is often very close to our last access

Cache uses a tiered structure to manage locality

small CPU
expensive S/bi e e it
o memory |-— on-chip caches
T off-chip cache
T~ L3
14— DRAM
memory main memory
big
cheap $/bi memary
heap $/bit CMory = disk
slow

CSE 141 Page 37

Cache Fundamentals

Thursday, May 19, 2022 3:37PM

Cache hit: Access where the data is found in the cache

Cache miss: An access where the data is not in the cache

Hit time: Time to access the cache

Miss penalty: time to move missed data from further level to closer
Hit ratio: percentage of the time data is found in the cache

Miss ratio: (1 - hit ratio)

Cache block/line size: amount of data that gets transferred on a cache miss
- Implicitly supports spacial locality

Instruction cache: holds instructions
Data cache: holds data
Unified cache: golds both instructions and data

Problems to consider:
- On memory access:
o how to know if it is a hit or miss
- On cache miss:
© Where to put new data?
© What data to throw out?
© How to remember what data was saved?

Implementation:

- Size of cache is inversely proportional to speed. Smaller = faster
- Caches will store minimal needed bits to work

CSE 141 Page 38

cpu

:

lowest-level

cache

A 4

next-level
memory/cache

Fully Associative Cache
Thursday, May 19, 2022 3:50 PM

Where to put? Anywhere
What to replace? Least recently used

address string: the rag 1dentifies
4 PPPPR1Be Mrss the address of
8 PPPP1RRB M <5 the cached data

12 Peee1100 M i<
4 90000100 H ¢
8 0000100 H< tag data

20 00010100 i 0000 UL e iz B

4 00000100 Hi ¢ U B

8 00001000 H{ 00001 pn L8711

20 00010100 H, ¢ 00000(om L41]

24 00011000 iss oot P ETREEN

12 090001100 M pept ottt

8 00001000 H ’lé 4 entries, each block holds one word, any block
4 00000100 M ' can hold any word.

CSE 141 Page 39

Direct Mapped Cache

Thursday, May 19, 2022 3:53 PM

Where to put? A specific spot
What to replace? Whatever is in the spot

an index 1s used
to determine
which line an address
might be found in

address string:

4 00000100 M

8 00001000 M/

12 00001100 M kens_(hse€

4 00000100 H. € Eeg \ ;
tag ata
¢ 00000100 =

g
8 00001000 H:
M?s) (05)
4 00001606 Mn‘ﬁ}» Qo ,A.f\,gq;e—é-}i)
8 90001000 Hi € O(| vose e
20 00010106 Miss G6-6—— : 5

20 0001010606
L ——— 42
] (0| 6ca | s L$-p3-
24 00011000 Miss

12 90001100 Hi € (L [oovo m £12:5]
8 00001000 M'i 4 entries, each block holds one word, each word
4 00000100 M in memory maps to exactly one cache location.

Note: Uses specific bits to determine row that the tag (remaining bits) is placed

CSE 141 Page 40

N-way Set Associative Cache

Thursday, May 19, 2022 4:15 PM

Where to put? A specific row and some column
What to replace? Something from that row which was least recently accessed

address string:
4 00000100 My

8 00001000 iy (, qf“* oH et
12 00001100 miss M

00000100
4 00000100 Hi(tag data tag data

;&

8 00001000 + 0 1000 | (50100 oool ! m (24: 277
20 00010100 M2 oo |\ m (Cr2:813 WG"‘—Q———_‘W“f?d"“EéP’
4 00000100 - ¢ poso—t (oo oo L

8 00001000 + ¢
20 00010100 H /¢
24 00011008 M.
12 00001100 Muss
8 e0e01000 /€
4 00000100 Mis

Associativity = number of blocks per set

Benefit of associative caches:
- Higher hit rate
Detriment of associative caches:
- Slightly larger (longer tags)
- Slightly slower (need to do a linear search)

CSE 141 Page 41

4 entries, each block holds o
In memory maps to

Cooooo m CH 17 2

rord, each word
a set of n cache lines

Larger Cache Blocks
Thursday, May 19, 2022 4:26 PM

Idea: Store more words per cache block entry
address string:

4 00000100 o _f‘_‘f
82 gggglaa@ 00000100 tag data (now 64 bits)
1 11600
00000 o
4 BGBBGIB@L mbo: 7]
8 00001600 vooo | m Lg. (5]
20 00010100
4 00000100
8 00001000
20 00010100
24 00011666 4 entries, each block holds two words, each word
12 00001100 in memory maps to exactly one cache location
8 00001000 (this cache 1s twice the total size of the prior caches).

4 00000100

But: There are diminishing returns for larger cache sizes

10%
4K
[)\D-

Miss o
rate 7%

b\“ K
0% ; A s . 256K
16 32 64 128 256
Block size

CSE 141 Page 42

Cache Parameters, Cache Performance

Thursday, May 19, 2022 4:36 PM

Cache size = Number of sets * block size * associativity

tag data tag data
A <

Bvyies per hlock

Sets per Cache

Blocks per set

Note: Cache size only considers cache data, not metadata (tags, valid bits)

Cache Performance:

CPIl = BCPI + MCPI

BCPI = base CPIl assuming perfect memory

MCPI = miss CPl, number of cycles per instruction when a miss occurs

CSE 141 Page 43

Handling Cache Accesses, Cache Alignment

Tuesday, May 24, 2022 3:37 PM

Procedure for accessing memory location:
1. Use index and tag to access cache and determine hit/miss.

2. If hit, return requested data.
3. If miss, select a cache block to be replaced, and access memory or
next lower cache (possibly stalling the processor).
— load entire missed cache line into cache
— return requested data to CPU (or higher cache)
4. If next lower memory is a cache, goto step 1 for that cache.

Example:

64 KB cache, direct-mapped, 32-byte cache block size 32 KB cache, 2-way set-associative, 16-byte block size

3130292827 ... 1716[15141312111098765(|43210 3130292827 ... 1716151413 121110987654|3210
[tag | index | | | tag | index | |
~ e ~ Yo
‘6 — I zocals s o Fio O
valid tag data valid tag data walid tag data
I.I o i III
2 = 4
o 0
8=
S =
o
gy e] S] [i i e — |
e O T T |S— S | =
232
= 0
o w
45 & I 1021
WM iy 1022
2047 1023
256 T)
p y 7 N N
32 hit/miss

hit/miss

Cache Alignment: Data which is loaded into the cache must be data which shares the same index and tag

CSE 141 Page 44

)95 QYLD Y |

[43

/sAAq 91 / g

=T/

Connecting Cache to the Pipeline

Tuesday, May 24, 2022

3:50 PM

A simplified view of the Data Memory module expansion with cache

J

—t

T > DM L : Address Data
T > e stall
" =
Read? Other
} e—
I Write? Memory - Memory Bus Peripherals
I Interface |— e
1 Module |5
| - Cache(s) | DRAM Controller |
: LA (TR
|
| DRAM |
/
addr
4
AT
refill
Cache Controller| — —
(with tag array) undate) Data array
8 -RERE jkg = MOL'//\ /Vl(Wo
= [RiFR 128] & &
7
Main Memory
L2
inali XM
In the pipeline:
DM
IM Reg ’b DM Reg [1
%
S‘:al{

CSE 141 Page 45

M/an

Cache Stores

Tuesday, May 24, 2022 4:26 PM

Problem: Stores don’t necessarily stall the CPU, but they change contents of memory
- Need to guarantee the caches and memory are all synced together when a store is executed
- Empty cache might need to pull from memory before storing a word in the cache block

Solution: policy decisions for stores
Keep memory and cache identical?

— wrife - {hrough => all writes go to both cache and main memory

— write ~bacl => writes go only to cache. Modified cache lines are
written back to memory when the line is replaced.

Make room in cache for store miss?
— write-allocate => on a store miss, bring written line into the cache
— write-around => on a store miss, ignore cache

CSE 141 Page 46

Types of Cache Miss, Solutions to Misses

Tuesday, May 24, 2022 4:39 PM

Compulsory miss: first time access to data
Capacity miss: Missed only because the cache isn't large enough
Conflict miss: Missed because data maps to same line as other data and was forced out

Solutions:

Compulsory misses: larger block sizes to load more initial values
Capacity misses: more capacity

Conflict misses: more associativity

CSE 141 Page 47

Advance Cache Architectures, Handling Misses

Thursday, May 26, 2022 3:29 PM

Terms:
Average Memory Access Time (AMAT) = hit time + miss rate * miss penalty

Ways to improve AMAT:
- Decrease hit time
- Decrease miss rate
- Decrease (observed) miss penalty

Idea: Victim cache stores recently evicted cache entries
- Alleviates conflict misses

Idea: Prefetching accesses memory before core needs it
- Can be done in hardware
- Can be done in software after profiling program for possible speedups
- Separate thread to prefetch data for another (speculative precomputation)

Reducing memory stalls:
- Non-blocking cache: cache that can handle new requests after a miss
- Hit-under-miss: can service hits after one miss, stalls on second miss
- Miss-under-miss: can have many outstanding misses before a stall

Tolerating cache misses:
- Stall on miss (no tolerance)
Stall on use (keep doing other instructions until miss is used)
Non-blocking caches (service other requests after a miss)
Out-of-order execution (execute other instructions out of order)
Multithreaded execution (run multiple processes while waiting for memory)

CSE 141 Page 48

Virtual Memory

Thursday, May 26, 2022 3:52 PM

Problem: what happens if two programs in the processor uses the same
memory addresses? What happens if a program accesses memory that
doesn't exist?

Idea: Abstract physical memory into virtual space
- To program, looks like all of memory is available
- Maps virtual addresses to actual physical memory, uses disk or larger
memory to handle overflows

Def: another level in cache/memory hierarchy
- Allows use of large memory space (on disk)

Terminology:
cache VM
block page
cache miss page fault
address virtual address
index physical address (sort of)

Difference from memory caches:
- Miss penalty of millions of cycles

Design Decisions:
- Large pages (4KB to MB)
- Associative mapping (usually fully associative)
- Software handling of misses but not hits
- Write-back only

CSE 141 Page 49

of caheing
5 to

e of cacheing
||Sk) 5 Main memory

virtual memory

disk

virtual addresses Pr xess 1

N
o
T

’P/CLCSS Z

virtual adgeCssNs

K

Virtual Address Translation

Thursday, May 26, 2022 4:03 PM

Translate addresses by changing only a few bits of the address
- Only translate the high order bits
- Leave lower bits the same, defines the page size (analogous to block offset)

TLB: Translation Lookaside Buffer stores some virtual page data

313029 sosvnnsnnnnns 1514131211 1098 .44+ 3210
| Virtual page number i Page offset |
J2 | 12
Valid Dirty Tag Physical page number
TLB C)e
=
TLB hit +—
=
=
o
0
Physical page number] Page offset

Block

}————————————— Physical address 1
Physical address tag I Cache index | —;ﬁ?;eT
1
Jos Jo4 +2

ag Nata

-

Valid

Cache

= [
Cache hit Data

Note: Cache lookup is now a serial process
- V->P translation through TLB
- Get index
- Read tag from cache
- Compare

Improvements:
- If V->P does not change the index, then they can be done in parallel, so index needs to come from only the page offset

CSE 141 Page 50

